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SUMMARY

Much attention has been recently focused on ensuring the nuclear survivability of
various systems operated by the military of the United States. Traditional methods
of performing nuclear survivakility validation (NSV) are somewhat lacking when
considering the characteristics of modern systems. This document describes a set of
technologies that may help the survivability community more effectively utilize
existing tools and data, and thus better perform survivability validation.

One problem with current approaches to NSV lies in the handling of uncertainty.
This is evident in defining threat definitions and scenarios, predicting resultant
environments, and calculating the consequent effects. Given that there are some
things that simply cannot be known in advance, these uncertainties must be dealt
with effectively rather that eliminated. For example, the exact geometries and
weapon outputs within an engagement are unknowable. Thus, it could be argued
that expending vast resources to calculate one small piece of the picture with
extreme precision is probably imprudent. Other uncertainty issues exist in inte-
?rating data from various tests and/or simulations. The appropriate fusion of data

rom a variety of sources would render a more cohesive database of effects for NSV
researchers to exercise.

Problems with uncertainty are compounded with issues regarding complexity.
With complex, integrated, and redundant systems becoming the rule, traditional
methods of analysis often cannot credibly predict overall system response. Many
popular simulations or test methods were not designed to accurately model effects
propagation from one complex subsystem to another. With new requirements such
as single event upset and operate through constraints becoming important, the task
of accurately performing nuclear survivability validation is complicated further.

Artificial intelligence (Al) technologies offer several methods for enhancing the
ability of the NSV community to effectively deal with the problems described above.
In a broad sense, Al can be thought of as using advanced computer techniques to
solve problems that are generally considered to require human skill or insight. Al
programs generally stress symbolic manipulation rather than numeric processing,
trying to generalize rather than calculate. A number of Al paradigms exist, but the
three that seem most applicable to NSV problems are expert systems, artificial neural
networks, and fuzzy logic.

Expert systems are on-line consultant programs that contain the distilled know-
ledge of one or more experts. The expert knowledge is derived as a series of rules
that the expert follows in the decision-making process. The creation of this rule base
is referred to as knowledge engineering. Several potential expert systems for NSV
application are described in the body of this paper, including systems for tying low-
level component/material effects into analyses at the highest levels of the engage- o
ment. Other potential systems include synergistic interaction modeling, diverse data oa _?g;z

fusion/integration, man-in-the-loop modeling, and NSV protocol generation. Rl
Several issues must be addressed when building expert systems, such as expert 48
identification and agreement, potential knowledge engineering difficulties, and need
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Artificial neural networks are self-training, self-organizing computer programs
for modeling numeric data. Asinformation, in the form of input-output trainin
pairs, is presented to the neural net program, underlying trends are learned an
generalities are formed. Neural nets can handle arbitrarily complex data, and thus
are often able to find trends that escape human detection. Thus, handling some of
the uncertainties mentioned above seems a natural application. Neural nets can also
be connected to each other, via a technique called "cascading.” Cascaded neural
nets could be used to model complex, integrated systems in a consistent approach
that would greatly benefit NSV research. Neural networks operate with great speed,
but the underlying reasoning used by the nets is usually difficult to interpret. Thus
familiarity with the data being modeled is mandatory.

Fuzzy logic, while not a true subfield of Al, is often applied to both expert
systems and neural networks. The primary concept in fuzzy logic is partial set
membership. In traditional set theory, an object is either completely a member of a
set, or not at all. Fuzzy logic and fuzzy set theory allows an object to be a partial
member of a set; a person could be considered seventy percent tall, for example.
Fuzzy logic has been shown to be a proper superset of traditional set theory, i.e.,
traditional sets are a special case of fuzzy sets. This concept applies well when
dealing with uncertain and/or imprecise data, such as is seen in many NSV problems.

Al research has been ongoing for about fifty years, and thus is not as recent as the
popular press would imply. While the field continues to evolve rapidly, many
paradigms have proven to be sound and applicable to a wide variety of problems. A
rule of thumb when dealing with Al systems is that some accuracy is usually sacrificed
for the sake of speed. Thus, artificial intelligence seems to be inJlicated where a fast,
good answer is better than a slow, perfect one. Given the continual change seen in
Al, care must be used to avoid problems sometimes encountered with emerging
technologies. But with a consistent, coordinated approach and appropriate testing,
Al techniques may present NSV researchers with a set of invaluable tools to augment
their arsenal of existing models and methodologies.
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SECTION 1
PROBLEM STATEMENT

In the event of a nuclear exchange or attack, many systems operated by the
military of the United States would be required to operate in a nuclear-degraded
environment. A variety of potential environments/effects, both prompt and
persistent, might be encountered in a nuclear conflict. The list below enumerates
some of the main nuclear effects that U.S. systems might be expected to encounter.

Overpressure

Ground Motion/Cratering
Thermal
Electromagnetic Pulse
X-Ray Fluence
Gamma Dose Rate
Total Dose

Prompt Gamma
Neutron Fluence

Dust

Infrared Irradiance
Electron Density
Debris Gamma

Debris Electrons
Neutron Flux

These effects occur in a variety of altitude regimes, persist for times ranging over
some twelve orders of magnitude, and have lethal ranges from a few kilometers up
to global scales.

One can see from the complexity and variety of this list that the issue of vali-
dating a system to operate in such a variety of environments is a large task. When
one considers the number of systems for which nuclear survivability validation must
be performed, the project appears monumental. Traditionally, nuclear survivability
validation (NSV) is per#ormed in two primary ways: with hardware tests and
analyses, including computer simulations. The hardware tests include underground
nuclear tests (UGTs), aboveground nonnuclear tests (AGTs), and a variety of simu-
fation devices (such as x-ray simulators). The computer analyses include first-
principles physics codes, engineering/design codes, and engagement analysis codes.
A third technique involves hybrid hardware/computer tests, where simulated signals
that might be produced by a nuclear environment are fed into a hardware device to
gauge its response.

1.1 UNCERTAINTY AND COMPLEXITY.

Using combinations of the above methods, analysts have for many years esti-
mated the response of U.S. systems to nuclear environments. Many of these analyses
have been less than robust, simply because of limited testing resources with whic
the studies were performed. The situation has also been subject to the effects of
considerable uncertainty in terms of predicting the outputs of enemy (and friendly)
weapons and their resulftant environments. Details on enemy warheads are sparse,
thus even if we could predict resultant environments and effects perfectly, not
knowing the actual yield and output spectrum would by definition induce error. To




a lesser extent, the same is true of U.S. nuclear devices. Since full-yield testing of
many systems is impossible, output characteristics must be estimated with engin-
eering/physics models.

Similarly, with strict limits on nuclear testing, the actual responses of systems to
many environments can only be estimated. While UGTs still provide the capability to
perform limited nuclear environment testing, high altitude and other open-air
nuclear tests are no longer available. Some data were qathered from early tests, but
information on such events was rather limited by today's standards. Many large
systems (aircraft, large satellites, etc.) are simply too large to be included in UGTs, so
component testing of vital subsystems is the most that can be attempted. With
integrated/redundant systems becoming more common, traditional methods of
analysis are often not able to believably predict overall system response. Most first-
principles codes were simply not designed to model effects propagation from one
complex subsystem to another.

A solid understanding of subsystem response is important when considering the
widespread use of embedded systems that are common to more than one weapon
system. For example, if a common fuzing system is used by several missiles/
warheads, an error in assessing its nuclear survivability might affect the viability of
several vital systems. This problem is especially important for "smart" weapons that
the U.S. relied on so heavily in Desert Storm. If a "smart” bomb that relies on
accuracy to allow low warhead yield loses its ability to home on a target, it is a much
less valuable weapon. We have not yet encountered a conflict in which these
weapons were forced to perform in a nuclear-degraded environment.

1.2 INTEGRATION.

Given the wealth of data that would need to be produced to accurately perform
NSV, data integration also becomes an issue. Similar data have been acquiredin a
variety of tests. Redundant information from two or more UGTs requires corre-
lation. Given inexact test procedures and varying test conditions, conflicting data
may also emerge, requiring resolution. Similar problems can arise with AGTs and
simulators. Uncorrelated or conflicting multi-test data can (and have) lead to
disagreement in the NSV community regarding which results should serve as the
metric. A further complication of this problem is cross-correlating data from distinct
test types. For example, data from AGTs, UGTs, and simulators may exist for certain
effects. Given the distinct nature of these test methods, it would not be surprising to
see difflersnces in the results. However, these diverse data must somehow be
reconciled.

Test data is not the only area in which conflicts arise. In many cases, NSV is
performed largely with computer code simulations. As with various tests, various
codes often produce dissimilar results, sometimes differing by orders of magnitude.
Sometimes this arises from using different engineering approaches, assumptions,
boundary conditions, or from a different method of applying first-principles physics.
Often, the codes have been adjusted to corroborate the results of a test, and codes
calibrated to different tests cannot be expected to return the same answer.

Finally, attempting to compare the results of predictive computer codes with the
results of actual tests is often an inexact science. Poorly understood physics and
computatioral simplifications are often to blame, as is unexpected weapon output
variation. In order to have a believable, cohesive set of NSV protocols and regimens,
test data and code results must be reconciled, and proper predictive tools identified.




Another factor in NSV data integration lies in integrating information for multi-
level system interactions. Data for large or complex systems would have likely been
produced at the lower levels of integration, such as the piece-part or rmaterials level.
These results must be formed into a cohesive model for major subsyste ns, and then
further into platform structures. Often, especially in global systems su.h as satellite
networks or ABM systems, these individual platform models must be iricorporated
into a "system of systems"” level analysis. Care must be used when performing this
multi-leve! integration since errors at the low levels propagate through the analysis
to the highest levels. Error budgets must be assigned and error analysis must be
performed to ensure models that reflect proper use of the available test and
simulation data.

1.3 NEW REQUIREMENTS.

Recent analyses have shown a need for U.S. systems to survive in certain circum-
stances that were not considered a decade ago. Single event upset (SEU) is one
example of an effect that has gained recent attention. SEU occurs when sub-atomic
particles pass through computer memory circuits, causing "bit flips” that can
degrade or stop on-board processing. Electrons generally do not penetraie deeply
enough to cause SEU. Additional considerations when assessing for NSV in terms of
SEU include circumvention algorithms in addition to the usual materials responses.

Closely related to the issue of SEU is that of "operate through" requirements.
Applicable systems are required to operate through severely nuclear-degraded
environments without being forced into circumvention. In these cases, new elec-
tronics hardening/shielding techniques must be considered, the understanding of
which may not be as mature as for less demanding systems. Other new requirements
are certain to emerge as systems are proposed and designed to be survivable in
nuclear environments.

1.4 PROBLEM SUMMARY.

It has been shown that, with the current emphasis on nuclear survivability and its
validation, traditional methods of assessing nuclear effects have some shortcomings.
Deficiencies exist in terms of dealing with uncertainty and complexity. Unresolve
issues are also evident for integrating test data and computer simulation results.
New requirements demand the acquisition of new methods of analysis. Itis a credit
to the NSV community that traditional methods have been used as successfully as
they have over the past decades, and discarding current tools and methodologies
would be folly. However, new technologies are emerging that may well hold the
key to using these tools more effectively, efficiently, and accurately. The remainder
of this paper will deal with one such set of technologies.




SECTION 2
ARTIFICIAL INTELLIGENCE (Al)

Artificial Intelligence (Al) is the collective term for a set of technologies computer
scientists have developed to solve problems using non-traditional programming
practices. Whether Al programs actually exhibit or possess intelligence or notis a
debate best left to the combatants, and the issue is unimportant for the purposes of
this paper. For semantic purposes and convenience, the phrase “Al" will be used
here assuming none of the philosophic trappings. There is no single widely-accepted
definition of Al, but in this paper, we will assume that Al involves using non-
traditional programming practices and languages to solve problems that are gener-
ally considered to require human expertise or insight to solve, or to solve themin a
way similar to the human brain. These problems and associated techniques are
widely varied, and no single paradigm defines or is common to all subfields of Al.

2.1 AIINTRODUCTION.

While Al has been common in the popular press only for about a decade, Al's
roots reach into the 1940s (McCullogh, 1943). Early research was conducted by
physiologists interested in the inner workings of vision and learning. Work contin-
ued and migrated towards computers in the 1950s, and the field blossomed in the
1960s. During the 1960s, early Al successes with artificial neural networks (described
in Section 4 below) in very limited problem domains prompted great speculation
and, in turn, investment. When neural nets failed to provide a panacea for most
computing problems, Al researchers with competing technologies quickly criticized
them, and promoted their own projects (Minsky, 1969). Disillusioned investors
turned away from Al until the late 1970s, when the expert systems (described in
Section 3 below) boom began.

The current Al push began with the demonstration of some powerful, laboratory-
built expert systems that solved some narrow problems that had pre\viously been
considered solely human expert territory. In their narrow domains, these systems
often performed their tasks as well as the best humans. The Japanese government
initiated their "Fifth Generation Computer Project” in the early 1980s, planning to
create a general purpose, natural language computer. Their plan was to use rule-
based programming in the ProLog language to achieve their goal. The U.S. response
to the Japanese project was dual. The Defense Advanced Research Projects Agency
(DARPA) started the Strategic Computing Initiative for developing several advanced
computer technologies for (mainly?military application. U.S. industry responded by
creating the Microelectronics and Computer Technology Corporation (MCC), a
consortium of high-tech American firms to pursue similarly lofty goals. The Japanese
project proved unachievable, and has redefined its scope significantly to match the
project's limited achievements. Several considerable technology advancements have
emerged from the MCC, but it too has undergone significant retrenchment. The
Strate%:c Computing Initiative produced several specialized applications, some of
which have found their way into deployed U.S. systems. However, there has been
little transfer of the DARPA-funded technology to non-military applications.

The 1980s saw a huge commercial investment in Al, particularly in the area of
expert systems. For reasons discussed below, expert systems are no longer held in
the favor they were five years ago. Of the hundreds of start-up expert systems
software and consulting firms that appeared in the early 1980s, only a handful




remain. While there is still quite a bit of activity in the expert systems arena, it has
become a "niche" market compared to what was expected a few years ago. The Al
boom prompted by expert systems would have ended during the last few years were
it not for a 1986 breakthrough in neural network technology that has overcome
many of their shortcomings of the 1960s. Current commercial Al research now
focuses largely on neural networks.

2.2 Al CONCEPTS.

One of the main ways in which Al differs from traditional computer program-
ming is that while mainstream techniques focus on numeric processing, Al primarily
uses symbolic processing. The most-used programming language for Al is called LISP
(LISt Processor). LISP programs consist completely of lists of objects and operators to
manipulate them. These objects consist of names, facts, and other objects, and the
operators perform such activities as list maintenance and object comparison and
evaluation. These objects do include numbers, so primitive arithmetic functions may
be performed, but the language is so tailored to non-numeric computing that an
equal sign is not a part of LISP's syntax. An exception to this Al trend is that neural
networks require a module to perform quick numeric matrix manipulation.

Given this symbolic emphasis, it should come as no surprise that tasks requiring
numeric speed and accuracy are poorly suited for LISP application. If, however, the
task can be modeled symbolically rather than numerically, Al programs often
provide impressive decreases in computer run-time. Itis not uncommon, for
example, for a neural network to operate many orders of magnitude quicker than
corresponding numeric programs. How this is achieved with expert systems and
neural networks will be discussed in detail later. Another general rule with Al
programs is that when these speed gains are achieved, the price is usually in paid in
accuracy. Since most Al programs attempt to generalize rather than calculate, most
results are estimates of reality. In short, Al applications usually have the most to
offer when a good, quick answer is more desirable than a slow, perfect one.

There are many subfields of Al currently being researched. Most of these are
known and studied only in the academic community, but several have emerged as
commercially viable in industry. The three main topics of interest in terms of NSV are
expert systems, neural networks, and fuzzy logic. These will be introduced here and
detailed in subsequent Sections. Some other Al subficlds will be listed briefly.

Expert systems are programs written to distill and apply the knowledge of human
experts in narrow expertise domains. The abilities of the expert are formed into a
series of IF-THEN rules by an Al programmer called a knowledge engineer. These
rules are then incorporated into an expert system "shell” program which is used to
manage and apply the rules as needed. The user of the system inputs information on
the problem at hand, and the expert system asks for more data as is necessary and
outputs its diagnosis of the situation. The user can then ask the system to describe
how the conclusion was derived, and the expert system will list the rule chain and
fact set that led it to the response. Expert systems have been created to solve such
problems as disease diagnosis, optimal computer configuration, and battlefield
assessment.

Artificial neural networks are programs that take a set of data in the form of
corresponding input-output pairs, and analyze the data for underlying trends and
patterns. Afterlearning these patterns, input data which the neural net has not
seen can be presented, and the network will give its estimate of the appropriate




output. Unlike the expert system, very limited information on how the neural net
arrived at its conclusion is available. Neural networks have been created to solve
problems such as financial prediction, weather forecasting, and hypervelocity
projectile lethality.

Fuzzy logicis a technology that allow objects to be classified and acted upon
without precise knowledge about the objects. In particular, fuzzy set theory defines
the concept of partial set membership (fuzzy sets) and fuzzy set operators. For
example, traditional ("crisp") set theory would allow a set to encompass all tall
people. An arbitrary discriminant would be required to determine set membership
requirements; six feet, two inches or taller, for example. The set of short people
might include those five feet or shorter. Medium height would include all others.
The implicit problem is that sharp boundaries must be imposed for imprecise
concepts. Fuzzy logic would allow the construction of two sets where, for example,
a person five feet, ten inches would be considered 70 percent tall and 30 percent
short. Fuzzy set operators (union, intersection, etc.) have been defined to allow
familiar set manipulations of fuzzy sets. Fuzzy logic has been applied to problems
such as automatic camera focusing, financial/insurance risk assessment, and
database information retrieval.

Other subfields of Al that have generated considerable interest include intelli-
ent database search methods, computer vision and other robotics fields, natural
human) language understanding, computer speech, intelligent tutoring and

training systems, rapid prototyping, and computer gaming (chess programs, etc.).




SECTION 3
EXPERT SYSTEMS

ELIZA is a2 simple parsing computer program that was popular in the 1970s
(Weizenbaum, 1965). Although itis little more than a series of IF-THEN and text
string manipulation statements written in an obscure computer language called
MAD, it acts like an interactive Freudian psychotherapist. A session with ELIZA
usually leads to a breakdown of its parsing and sentence reconstruction aigorithms,
producing nonsensical and often humorous responses to the user. ELIZA will carry
on conversations with the user indefinitely, prompting for more information on
certain keywords that the user had mentioned in the course of the dialogue.
However, never reaching a solution to the user's problem does present some
element of realism. While it was created as little more than a toy, it set the stage for
the legitimate computerized experts that Al was about to produce.

3.1 EXPERT SYSTEMS: TECHNICAL DISCUSSION.

Expert systems are also often referred to as knowledge-based or rule-based
systems, as the primary data structure is generally the IF-THEN rule. Rather than
writing and debugging a program, expert system creation consists mainly of deriving
and elucidating rules and knowledge. With expert systems, the emphasis is on what
to know rather than what to do. The IF side of the rule is called the antecedent, and
the THEN part is the consequent. A rule from MYCIN (Shortliffe, 1976), an expert
system for medical diagnosis, is shown below:

IF the infection is primary-bacteria
AND thessite of the culture is one of the sterile sites
AND the suspected portal of entry of the organism is the
gastrointestinal tract,
THEN there is suggestive evidence (0.7) that the identity of the
organism is bacteroids.

In the above rule, there are multiple antecedents. It is also common for a rule to
have multiple consequents. The antecedents here are connected with logical AND
operators. Other logical operators used in the antecedent include NOT (negation),
OR, and XOR (exclusive OR - this OR that, but not both). The only legal logical
ogerators for use in the consequent are AND and NOT. In the consequent shown
above, there is a confidence factor of 0.7 shown, indicating that if the conditions in
the antecedent are met, there is a 70 percent probability of the consequent being
true. There are special operators internal to expert systems that propagate the
probabilities through multiple layers of rules to determine a final diagnosis confi-
dence factor. These are important, as many expert systems will output a list of
possible conclusions, each with a probability attached, rather than a single diagnosis.

The process of deriving the rule base for the expert system is called knowledge
engineering. This process includes interviewing the expert (or analyzing some
database) to determine the appropriate issues or parameters. The relationships
between these issues is investigated next, and the prototype rules are formed. This
rule base is then checked for completeness and consistency, and as necessary, the
knowledge engineering process iterates. The knowledge engineer must also
determine the acrgropriate structure for the rule base, and the best inferencing tech-
nique (described below). While this method sounds straightforward, unsuccessful




knowledge engineering was a large factor in the recent expert systems decline (see
Appendix A).

The rules are manipulated within an expert system with a part of the program
called the inference engine. This module applies the appropriate rules when
needed, and searches for facts concerning the current situation. These rules and
facts are combined by the inference engine to determine the diagnosis or solution.
The expert system can also explain to the user why it wants to know a certain piece
of information or list the rule path that led to the answer given. There are two main
inferencing techniques used by expert systems: forward and backward chaining.
Forward chaining takes a (hopefully) complete set of facts and works toward
possible conclusions, while backward chainin? picks a possible solution and attempts
to prove or disprove it based on the facts available. In theory, both should give the
same answer, but getting to the solution may be easier for one mode given a certain
class of problems. To show how forward and backward chaining work, consider the
following "expert system” and set of facts.

Rules: Facts:
(1) tFaTHENb. a=TRUE.
(2) IFb THEN c. d =FALSE.

(3) IFcANDd THEN e.
(4) IFcAND NOTd THENf.

The system would have the additional information that the desired answer is
whether e is TRUE or if f is TRUE. In forward chaining, the sequence of events within
the inference enaine would go something like as follows. Given thatais TRUE, b is
TRUE from (1). The process of proving the antecedents of a rule to "fire" the
consequent is called instantiation. Since b is TRUE, cis TRUE from (2). Sinced is
FALSE, (3) does not apply. Since cis TRUE and d is FALSE, fis TRUE from (4). The
snstem would then determine that there are no further applicable rules and report
that fis TRUE (if asked about the status of e, the response would be UNKNOWN).

With backward chaining, the system would first assume e is TRUE. It would then
scan the rule base for rules with e set to TRUE in the consequent, and consider the
premises of the antecedent. In this case, it would find that for e to be true, cand d
would need to be true from (3). Checking the facts, it would find d to be false, and
thus (3) is not applicable. It would look for other rules with e in the consequent, but
finding none it would abandon e and repeat the above algorithm for f. In (4), it
would find that ¢ needs to be TRUE and d needs to be FALSE. The fact base would
show d to be FALSE, and no information about ¢ exists. Thus the rule base is
searched for rules with cin the consequent, finding (2). Since the statusofbin (2) is
unknown, the inference engine would continue to chain backwards, finding (1) with
b in the consequent. Here, though, it finds resolution, with a = TRUE being in the
fact base. This result is then propagated back up the chain, determining f to be
TRUE. Again, the status of e remains UNKNOWN.

For classes of problems where there is a relatively small number of conclusions,
backward chaining works quite well, and quickly. Conversely, for problems with a
large (or infinite) number of answers, forward chaining is indicated. Most com-
mercial packages automaticallr use whichever inferencing technique is indicated,
often using both within a single consultation. In an actual expert system, there
would be many more rules (tens to thousands) than were shown in the example
above, and the fact base would be created dynamically during the run, with the




expert system prompting the user for information. It should now be more clear how
important a correct and complete rule base is to expert system development.

There are several parts of an expert system besides the rule base and inference
engine, but they are generally support modules. Figure 3-1 below shows the parts of
a generic expert systems shell (Lenat, 1984). In this figure, the rules are the only part
which are necessarily created by the expert system designer/knowledge engineer.
The remaining parts of the system may be created for an individual expert system,
but this is usually not the case. The various support modules are available as part of
several commercial expert system packages. Most packages include considerably
more capabilities than the shell outlined above, including such modules as industrial
process control tools, graphical shells, and multi computer language interfaces.
Figure 3-1 shows the parts of a rather Spartan, traditional expert system shell.

RULES
Rule
Consultant )
Acquisition
System
Package
Explanation . Knowledge
Inference Engine Base
Subsystem Facilities

Figure 3-1. Expert system shell components.

In Figure 3-1, the consultant system asks the user for the status of various
parameters needed by the inference engine. The rule acquisition package is the part
of the program wherein the user inputs and tests the rules. It also prompts the user
for rules on certain parameters for which it judges insufficient rules exist. The expla-
nation subsystem gives the user information regarding why it wants to know a
certain fact, the line of reasoning it is currently pursuing, and the rules that were
used to reach the final conclusion. The knowledge base facilities are routines that
check the rule base for consistency. For example, two sets of rules that are seemingly
consistent may actually lead to a logical contradiction (i.e., implying something and
its opposite). In large rule bases, it is common for contradictory rule combinations to
appear, and they usually lead to severe problems if not detected.




3.2 POTENTIAL EXPERT SYSTEMS USES FOR NUCLEAR SURVIVABILITY
VALIDATION.

Given the NSV problems outlined in Section 1, there are several ways in which
expert systems might be used. Consider the problems described with integrated
system component interactions. An expert system might be constructed to help
propagate low-level effects to determine system impact. For instance, a rule from an
expert system for nuclear warhead modeling might be something like:

IF circumvention has occurred since reentry
AND altitude sensor isinoperational,
THEN warhead fuzing mode is impact
AND heightofburstisO
AND warhead lethality radius is diminished by 40%.

Rules such as this would serve to tie low-level component/materials effects into
analyses at the highest levels of the engagement, without extensive numeric and
engineering calculations. Rules would be derived from experts in the lethality and
engagement fields, as well as from effects and materials databases in existence.
Various rules would be designed to consolidate all levels of interaction: materials,
piece-part, component, subsystem, system, and system of systems. Similarly, complex
systems of systems might have several different systems incorporated (sensors,
weapons, communications, etc.). An expert system could be designed to model the
synergistic interactions between vastly different systems. A possible rule for an ABM
effectiveness expert system might read:

IF nudet has occurred uprange less than 50 kilometers
AND sensor type is ground-based phased array radar,

THEN target warhead detection range is degraded by 20%
AND maximum interceptor range is degraded by 30%
AND maximum target commit altitude is 600 kilometers
AND minimum intercept altitude is 75 kilometers.

Please note that the rules and values contained therein are entirely fictitious, but
representative of what could be expected in actual expert systems.

Another problem area described in Section 1 was that of integrating data from
various sources and resolving conflicts between them. Recall that these conflicts
occur among simulation codes, among various tests, and between codes and tests.
An expert system could be constructeg, based on NSV community consensus, that
would define what results are to be considered the baseline in different regimes.
For example, a rule from such an expert system might read:

IF burst altitude is exoatmospheric
AND affected system is GPS satellite,
THEN use results of HOLY SMOKES event
AND use results of ULTRANUKE code.

Again (obviously), this rule is a fictitious example of what might actually be used.
A third area in which expert systemé could potentially aid in nuclear survivability
validation is effects/response characterization. An expert system might be cc:istruc-

ted to distill the results of effects and response codes to give estimates of their
outputs. For example:

10




IF burst altitude is exoatmospheric
AND range is less than 30 kilometers
AND x-ray fluence is greater than 0.75 cal/cm2,
THEN category 3 electronics exhibit type 3, 14, 22 effects
AND category 6 electronics exhibit type 3, 14, 22, 28 effects.

Extensive work in categorization would be required to construct such an expert
system, but another expert system could possibly help out there, too. Other rules
could include scaling equations to determine specific failure probabilities or
individual system effects.

in addition to the problems outlined in Section 1, there are several other areasin
which expert systems could be applied to nuclear survivability validation. For
instance, consider the task of creating nuclear survivability validation protocols and
regimens. This task entails determining the efficacy of various tools to assess effects,
and defining the ways in which they should be used. These protocols would be
created for a very wide range of systems. However, many of the systems would have
either common components or very similar ones. There are probably very few U.S.
systems that are completely dissimilar to all others. Thus the expertise used for NSV
for one system could, in most cases, be applied to another. In fact, if an inconsistent
approach (such as might emerge from creating NSV protocols without common
toa's/guidelines), would Iikely%ead to an inconsistent set of protocols that would not
be considered credible in the nuclear survivability community. An expert system, or
more likely a set of expert systems, could be constructed to be used by protocol
writers to help maintain consistency. These expert systems would require infor-
mation on components, configurations, materials, and other pertinent information,
and would counsel the protocol analyst on a recommended set of tools and NSV
methodologies. A sample rule might be something like:

IF system is ground-based interceptor
AND guidance mode is inertial
AND subsystems of interest is ACME RLG,

THEN recommend code group 4 for neutron flux analysis
AND recommend code group 7b for x-ray fluence analysis
AND recommend NOT use of event 23 thermal results
AND recommend database 16 for EMP analysis.

Again, this is a contrived example, but would likely be representative of the type of
rule that would be needed to construct an expert system to aid in NSV protocol
development. Distinct expert systems would Iikely{)e needed for various types of
systems, and perhaps even for various effects, in order to keep the expert system
sizes manageable. In such an event, it would be important to maintain consistent
rule bases among the expert systems.

Expert systems would also have a place in engagement modeling used for NSV,
especially at the systems or system of systems level. Many engagement codes
currently ignore the effect of "men-in-the-loop.” Others simplify the effect by
modeling a time delay and a fixed probability of making the correct decision. A
higher fidelity model could be created using an expert system to model the human
effect. An expert system could be constructed to make the human decisions in much
the same way (and with roughly the same accuracy) as a man-in-the-loop would.
The expert knowledge imparted o the expert system would allow the program to
not only make mistakes with more accurate frequency, but would also teng to make
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the correct mistakes (i.e., the same mistakes the human counterpart would likely
make). Thus the effect of the man-in-the-loop and potentially incomplete infor-
mation could be better gauged. An estimate could also be made of the time
required to make the decision based on the number of rules that fired (or perhaps
the number of antecedents and consequents to account for rule complexity). Alter-
natively, the run-time of the expert system could be scaled to account for tKe time
delay. This methodology might be one of the only accurate ways to assess the effect
of humans on nuclear survivability.

This section has presented several potential applications for expert systems in the
nuclear survivability validation arena. This list is by no means complete or exclusive.
As technologies such as this are demonstrated, the need for new applications usually
emerges. With these examples, the concept of how and where expert systems might
be used was demonstrated. The next section attempts to convey where they may be
inappropriate.

3.3 EXPERT SYSTEM ISSUES.

While expert systems technology offers a powerful, non-traditional way to
approach many difficult problems, it is not a panacea. In fact, the over-hyping of
expert systems in no small part led to a recent shakeout in the expert systems
industry. Having a good grasp on the issues that must be addressed before entering
in to the construction of an expert system is vital to success of the project.

The first obvious issue in attempting an expert system is identifying the expert
that is to be modeled. Traditionally, this expert is a person (or persons), but expert-
less expert systems have also been constructed from databases or other existing
sources of information. The pointis, the expertise must exist somewhere before it
can be modeled. Expert systems are not the correct tool for attempting to invent
expertise where humans have failed, although this may produce new insights. The
expertise must be available, and if human, agreeable. In numerous cases in the past,
individuals have been less than willing to participate in the automation of their
knowledge, fearing it would diminish their status or make them sugperfluous. From
the viewpoint of the Al scientist, it is an honor to be considered expert enough to
warrant the efort of computer emulation. To those unfamiliar with Al and expert
systems, it may seem to be a trivialization of their abilities.

Another issue regarding the choice of experts regards potential disagreement
among experts. Most experts have very strong ideas that they will not allow to be
challenged. Human nature, however, teaches that rarely would two experts in the
same field a?ree on all issues. If multiple experts are being used, the knowledge
engineer will likely have to arbitrate disagreements between experts, or simply
choose an opinion to use. There is also the possibility that an outside expert will
challenge the system with issues either legitimate or frivolous. Even if a computer
code or database is used as the source of the expertise, proponents of competing or
opposing products may cause similar arguments. Given that experts in the same
field often disagree, experts must sometimes simply be wrong. Not surprisingly, this
effect can propagate into the expert system.

As was mentioned above, the most difficult task in creating an expert system is
the knowledge engineering. While uncooperative experts occasionally present diffi-
culties, more often the most serious problems arise when the knowledge engineer
and the expert are unable to derive the knowledge that underlies the expert's
abilities. The problem seems to arise almost from the very definition of an expert.
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It has been said that "an expert is really no smarter than you or |; he is just better
organized and has viewgraphs."” Were this the case, expert system generation
would be a much more straightforward task. In reality, a person achieves expert
status upon development of the ability to solve problems or answer questions
without having to go through extensive mental machinations.

An analog for this exists in the computer science world. Consider a computer
program written in FORTRAN, Pascal, or any other compiled language. The source
code is readable by any programmer fluent in the appropriate language. Once the
program is compiled into an executable file, it is impossible to get any useful
information about how the problem is solved by looking at the executable file.
Tools such as disassemblers are available for performing a limited translation back to
understandable code. However, once compiled, the only good way for the execu-
table code to yield knowledge is by actually running the program. It appears that
most true experts have, over a number of years, “compiled” their knowledge much
like in the above description. The ability to solve the problem exists, but often the
expertdoes not know exactly why the answer is. It is the task of the knowledge
engineer to "disassemble” the expert's “program” back into "source code” that can
be used in an expert system.

Another knowledge engineering difficulty lies in the fact that in order for the
knowledge engineer to successfully derive the rule base, he must have a reasonable
understanding of the expert's field. It would be very difficult for an accurate and
complete rule base to emerge if the knowledge engineer doesn‘t know the right
probing questions to ask. It is not as simple as asking the expert, "So just how do you
do this, anyway?" Knowledge engineering is a highly iterative process wherein as
the knowledge engineer's understanding of the expert's field sharpens, the appro-
priate issues become clearer. A good example of this occurred in the construction of
the MYCIN (Lenat, 1984) expert ?Istem. As a byproduct of creating MYCIN (an
expert system for diagnosing and treating infectious blood diseases), knowledge
engineer and system developer Edward Shortliffe became Dr. Edward Shortliffe,
M.D. Aslong as the knowledge engineer has a reasonable proficiency in the
problem domain, the level of understanding necessary to construct the expert
system will usually evolve.

Another issue that must be addressed before starting to build an expert system is
that of updates and maintenance. When the expert system is first fielded, especially
ifitis widely distributed, certain shortcomings will likely emerge that were not
found during development and testing. Also, as the problem domain changes, or as
new tools or data become available, provisions must be made to allow the expert
system to grow or change to reflect this. The point here is that the utility of a static
system is usually marﬁinal. It should be expected that to maximize the usefulness of
an expert system, it should be viewed as an ongoing effort. For example, the R1
(McDermott, 1980) expert system for configuring DEC VAX computers has grown by
about an order of magnitude since its first application.
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SECTION 4
ARTIFICIAL NEURAL NETWORKS

Science fiction has long regaled us with tales of intelligent computers and robots
with human-like abilities and personalities. To computer scientists, such machines
have been little more than dreams, for it has Iong been clear that there are strict
limits on the abilities of programs that consist of "In situation X, do Y." Databases of
instructions could never be complete, and would likely fail to identify correct
contexts quite often anyway. Itis clear that if a machine is to emulate man, it must
learn and process information like man. In this light, recent developments in the
field of neural networks have presented the most promising existing technology for
creating computers that at least seem to use the same type of internal data
structures as humans.

41 NEURAL NETWORKS: TECHNICAL DISCUSSION.

Neural networks are the sole successfully deployed Al paradigm that attempts to
mimic the activities of the human brain anJhow it physically operates. Expert
systems, while they mimic the abilities of the brain, use a data structure and
algorithm that was contrived largely for the sake of convenience. The primary
primitive data structure in the human brain is the neuron. There are approximately
1011 neurons in the human brain. Extending from the neurons are tendril-like
axons, which carry electrochemical signals from the body of the neuron. Thinner
structures called Jendrites protrude from the axons, and continue to propagate the
signals from the neural cell bodies. Where the dendrites from two neurons meet,
interneural signals are passed. These intersection points are called synapses.

Figure 4-1 shows an extremely simplified representation of two connected biological
neurons.

Connecting the 1011 neurons are about 1015 synapses. According to neuro-
anatomical theory, the human brain "works" through the continual electrochemical
stimulation of groups of neurons. When a neuron receives a threshold amount of
electrochemical stimulus, it "fires" a signal of its own, the magnitude of which seems
to be a function of the sum of all incoming signals, and a cascading effect occurs.
Learning theory has determined that when two connected neurons fire simul-
taneously, the connection between them is strengthened. Since each neuron is
connected to many others, it is clear from this architecture and operation how a
single neuron may be involved in several functions/memories. Depending on which
adjacent neurons are firing, a neuron will send out various signal levels. Human
memories and mental abilities appear to lie largely in the connectivity and synaptic
organization of the brain. Exactly how the human brain "trains" anJorganizes itself
is still somewhat of a mystery to biological researchers.

Artificial neural networks are computer programs that emulate some of the
higher-level functions of the architecture described above. Asin the human brain,
there are neurons and synapses modeled, with various synaptic connection strengths
(referred to as weights) for each connected pair of neurons. However, similar to
many computer programs (and unlike the brain) there is a specific set of input and
output neurons for each problem and each net. These input and output neurons
correspond to the input and output parameters of a traditional computer program,
and the other neurons, alcng with the synapses and their weights, correspond to the
instructions in a standard program. Figure 4-2 shows a representation of a generic
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Figure 4-1. Biological neurons.

artificial neural network. The network shown has seven input neurons, two output
neurons, two hidden layers, nine hidden neurons, and 63 synapses (and weights).
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Figure 4-2. Generic neural network architecture.

Notice that the network is organized into layers. There are four layers of neurons
and three layers of synapses in the network diagramed in Figure 4-2. Some
researchers would refer to this as a four-layer network, while others would call it a
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three-layer network. Since the synaptic weights contain the main information in the
system, in this paper the latter nomenclature will be used. Thus the network in
Figure 4-2 will be considered a three-layer network. While the purposes of the input
and output neurons were described above, the hidden layers may seem confusing.
They are called hidden since users do not explicitly define the values contained in
them, rather they are filled as a byproduct of the calculations involved in running
the network. Also, the hidden neuron contents are generally intermediate calcu-
lation results that have little or no apparent meaning in most cases. Thus since they
are generally not examined by users, they remain higden from view.

Synapses exist between all neurons of adjacent layers. Weights are defined for
each synapse, to promote or inhibit the simultaneous firing of connected neurons.
These weights are collected into matrices, one for each layer of synapses. Thus the
matrix containing the weights of the synapses between the input neuron layer and
the leftmost hidden neuron layer would be a seven by five matrix. To run the
network, a given set of seven input values (the input vector) would be multiplied by
this matrix, yielding a vector for the first hidden neuron layer. This vector would
have five elements, each one representing the sum of the seven signals incoming
from the input layer. Each of the seven signals incoming to each of the five neurons
would simply be the appropriate input neuron value multiplied by the corres-
ponding synaptic strength.

At the hidden layer, the signal sums are modified before being passed on. Since
neurons with large incoming signal sums would tend to overwhelm those with small
incoming signal sums, the sums are generally passed through an activation function
that compresses the sums into smaller numeric range, often between zero and one.
This function also makes all large sums look about the same (function output of
about one) and makes all small sums look about the same (function output of about
zero). There are several functions that are used to do this. One of the earliest-used
was a linear function, where sums below or above some thresholds are mapped to
zero or one, respectively, and between the thresholds the function assumes a
strai?ht line. A more powerful function is the sigmoid function, which makes very
small or large sums look similar (near zero or one), but in the one-sigma part of the
distribution, an S-shaped curve completes the map. Activation functions that
compress incoming signal sums into a set range like this often referred to as
squashing functions, and neurons that incorporate them are called squash neurons.
?ther squashing functions include step functions. hyperbolic tangents, and gaussian

unctions.

Continuing the example neural netin Figure 4-2, the squashed values from the
leftmost hidden neuron layer would then form the input vector for multiplication by
the five by four weight matrix between the two hidden neuron layers. The resulting
four-element vector at the rightmost hidden neuron layer would then be squashed
and multiplied by the four by two weight matrix between the rightmosi hidden
layer and the output neuron layer. The final resulting two element vector would
then be the output of the neural network for the given set of input neurons.

Early neural networks were single layer systems called perceptrons (Rosenblatt,
1958). Training perceptrons (that is, adjusting the synaptic wei%hts so that they
solve a problem) was a relatively simple task. A training algorithm was derived that
was proven to be able to train a network to solve any perceptron-solvable problem
(Rosenblatt, 1962). The problem was only a few interesting and useful problems
could be addressed with perceptrons.
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For instance, one famous example of a function that perceptrons could not
model was the logical exclusive OR. Recall that the XOR function returns the value
of TRUE if one of its two operands is TRUE, and FALSE if none or both are TRUE.
Consider Figure 4-3 that shows the outputs of f(x,y) =x XOR y. In this graph 0 and 1
represent FALSE and TRUE, respectively.

! ﬁ} ——————————————————— -

f(x,y)=x XOR y
O =xXORy=1=TRUE
@ = xXORy=0=FALSE

Figure 4-3. XOR function.

It was proved that perceptrons can only solve problems that are linearly
separable. For the XOR case shown in Figure 4-3, that means in order to he modeled
by a perceptron, one must be able to uraw a straight line on the graph that divides
the plane such that all like values lie on tneir own side of the line. A cursory
inspection of this figure shows that no straight line can be drawn to separate the
hollow circles from the filled circles. For problems with more dimensions than this
simple example, a three-dimensional problem space would need to be separable by
planes, a four-dimensional space by hypercubes, and so on.

The development of the backpropagation training algorithm (Rumethart, 1986)
finally presented an effective and reasonably efficient method for training multi-
layer neural networks. This algorithm removed the largest roadblocks to neural net
utility that had appeared in the 1960s. Neural network training, by back-
propagation or otherwise, is similar (on the surface, at least) to human learning.
Artificial neural network training is done basically by presenting the network with
sets of inputs along with their resultant outputs. These data sets are called training

pairs, and they consist of the known corresponding input and output neuron vectors
as described above.

The initial network configuration (number of hidden neuron layers, number of
hidden neurons in each layer, activation function, training rate, error tolerance) is
chosen by the system designer. There are no set rules to determine these network
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parameters, and trial and error based on experience seems to be the best way to do
this currently. The synaptic weights are randomized, so that the system initially
consists of "white noise."

The training pairs are then run through the network as described above, to see
how many cases it gets correct. A correct case is one where the input vector's
network result is sufficiently close to the established output vector from the training
pair. Initially the number of correct cases will be very small. Thisis referred to as a
forward pass through the network. The network training module then examines the
errors and adjusts the synaptic weights in an attempt to increase the number of
correctly assessed training pairs. This adjustment is referred to as a reverse pass
through the network. Once the adjustments have been made, the trainin? pairs are
anain presented to the network, and the entire process iterates. Eventually, the
number of correct cases will reach a maximum, and the iteration can end.

Once the training is complete, testing is performed. When creating the database
of training pairs, some of the data are withheld from the system. Usually between
ten and twenty percent of the available data are set aside to run through the trained
network, testing the system's ability to correctly assess cases on which it has not
trained. If the testing pairs are assessed with success similar to the training pairs, and
if this performance is sufficient, the network is ready for actual use. If the testing
pairs are not assessed with sufficient accuracy, the network parameters must be
adjusted by the network designer, and the entire process is repeated until
acceptable results are achieved. For some problems, this will never occur. Recent
advances in neural network technology have significantly advanced the field, but no
single Al paradigm can ever solve every problem.

The actual backpropagation algorithm fits within the framework described
above. The theory and actual mathematical algorithm are quite involved and
beyond the scope of this paper. The general conceptis that the error adjustments
backpropa?(ated into the weight matrices during the reverse passes get smaller as
the network gets more accurate. Thus if the problem is trainable, the system finally
converges to an acceptably small total error.

Documented and intensely studied problems do exist with backpropagation
(Wasserman, 1989). Network paralysis can occur when weights become too large
due to excessive adjustment. When this occurs, the error wﬂich is backpropagated
becomes very small, since the error is calculated as proportional to the derivative of
the squashing function. At large summed neuron input levels, the slope (derivative)
of the squashing function is near zero, and thus the backpropagated errors are near
zero. Local minima sometimes cause the networks to stop training before an
optimal set of synaptic v-eights is found. One way to view the backpropagation
algorithm is traversing an error surface, trying to find the minimum point. However,
since this algorithm only allows downhill travel, local minima sometimes are found,
since these error surfaces are often convoluted. The algorithm cannot travel out of
these local valleys, even if the true and much deeper minimum is very near. A third
problem deals with the common computer tradeoff of accuracy versus runtime. One
algorithm parameter is called step size, which is closely related to learning rate. If
the step is too large, paralysis or instability results; too small and training time
becomes very long.

One way in which backpropagation differs from human learning is that the same

set of data must be cycled through the network over and over, until training is
complete. Humans learn through a continuous stream of new data, but manage to
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remember (most of) what has been previously learned. If this continuous, non-
repeating data stream were fed to a backpropagating trainer, most things would be
soon forgotten, even if learned perfectly initially.

While other neural net training methods and representations exist, none have
successfully emerged as widely or commercially viable at this point. Several alternate
technologies are very promising, though, and will be mentioned briefly here for
completeness. Counterpropagation networks (Hecht-Nielsen, 1988) are basically
look-up tables capable of generalization. They are very fast-running, but have
limited applications. Statistical training methods (Geman, 1984) are useful for elimi-
nating problems with local minima, but are very slow training. Hopfield networks
(Hoptield, 1982), also called recurrent networks, train quickly and use computer
space efficiently, but are unstable and have many other problems. Bidirectional
associative memories (BAMs) (Kosko, 1987) are similar to Hopfield nets, but are
modeled more after human learning. Problems include limited storage ability and
unpredictable behavior. Adaptive resonance theory (ART) (Carpenter, 1987)
suggests a method for learning without affecting previously learned data, but is very
complex and currently still largely theoretical. Finally, cognitrons (Fukushima, 1975)
are human-inspired systems that include elements of psychology and physiology.
Though they show great promise, and model the human brain more closely than
other systems, they are exceedingly complex and inefficient, requiring tremendous
computing resources. Some of these methods are beginning to appear in commer-
cial products, but backpropagation is still the most widely used algorithm by far.
Given the breadth of ongoing neural net research, new standards are likely to
emerge in the future.

In the description following Figure 4-2, the way in which neural nets are
generally used was implied. Neural net shell programs provide facilities for the
construction and exercising of user-trained networks. These shell programs are
generally stand-alone applications, and cannot be embedded within other appli-
cations. However, some shell programs provide the option of creating source code
outputs of the trained network that can be included in-line with other programs.
Some programs allow the code to be generated in a variety of computer languages,
such as FORTRAN, Pascal, or C. This code can then be accessed as a subroutine from
within an existing program. This is possible because of the relatively simple mathe-
matics involved in running trained networks. Recall from the example above that
the required numeric manipulations consist mainly of matrix multiplication and
squashing function evaluation.

Another fascinating way in which neural networks are sometimes used is through
cascading systems. When used in this manner, the nutput neurons from one serve as
input neurons in another system. This application of neural networks allows very
complex objects to be modeled modularly, with subsystems or components each
using their own individually-created neural networks. This type of application of
most easily accomplished with source-code-level networks as described in the

receding paragraph. Using neural nets in this way is very consistent with human
rain activity; neuroanatomists have determined that biological neurons often
function in identifiable groups that send corporate signals to other neural groups.

4.2 POTENTIAL NEURAL NETWORKS FOR NUCLEAR SURVIVABILITY VALIDATION.
As with expert systems, there are several ways in which artificial neural networks

could be used to solve existing problems with nuclear survivability validation. The
issue of uncertainty was one that was evident on several levels. Uncertainty exists in
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assessing threat characteristics. Nuclear environments need to be calculated for the
effects listed in the problem statement, and such prediction is not an exact science.
Finally, calculating the system response from the environments induces yet another
level of uncertainty.

Neural nets, by their nature, have the ability to handle uncertain data. Most
neural net outputs are estimates based on trends. The generalization that is the
goal of almost all neural nets usually implies that the final result will be to correctly
approximate the actual answer. This being the case, data which are not known with
great precision can be modeled relatively easily.

Consider an example where one potential problem input is nuclear yield, and the
yield is known only within twenty percent. In setting up the network, ten (for
example) input neurons would be utilized for nuclear yield, each corresponding to a
range of Kields, probably scaled !logarithmically. For training, where exact cases are
known, the appropriate yield input neuron would be given a value of one, and the
other yield input neurons woulcrbe set to zero. Once a valid system was in place and
a run was to be made, the determination of what yield input neuron(s) would be
activated could be calculated relatively easily. If the range of uncertainty falls
entirely within one neuron's assigned range, that neuron would be set to one; all
others to zero. If the uncertainty range spanned two (or more) neurons' assigned
ranges, each would be given a fractional value corresponding to the probability that
the actual value fell in its domain. Two adjacent yield neurons might have values of
0.7 and 0.3. The net would then be exercised with these (and possibly other)
uncertain values to determine a "best guess” of whatever the desiregoutput was
(perhaps overpressure or EMP).

Similar "bin" neurons could be defined for any other uncertain quantities, in the
threat, environment, effect, and response arenas. The number of bins used for each
uncertain parameter would be a function of the required output precision and the
general uncertainty inherent in the parameter. The conceptdescribed here is
actually a combination of neural networks and fuzzy logic. Fuzzy set theory, which is
based on the concept of partial set membership, will be discussed in detail in
Section 5 of this document.

Another problem extant in performing nuclear survivability validation is inte-
grating results from multiple simulations, multiple tests, or both, into a unified and
consistent database. One of the problems that is seen in this area is that "bad" data
will sometimes creep into the system. Neural nets have the ability to ignore clearly
erroneous data, and have shown that in some cases upwards of ten percent bad data
are tolerable.

When attempting to correlate data from different sources into a single resource,
in many cases the sources will not agree. In these cases, a "credibility neuron” could
be implemented, and codes that specialize, for example, in a certain regime of an
effect could be given precedence in the appropriate cases. Again, fuzzy values could
be used for this neuron. In cases where there is a vast and consistent difference in
results, a neural net probably would not be able to train on the data. in such an
event, a human decision would be required to determine the efficacy of the various
tools or data.

A third area where neural nets seem a natural tool for NSV is that of multi-level

system simulation integration. In modeling complex systems, or systems of systems,
the natural paradigm for computer modeling would be to model subsys:ems (at all
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levels) with modules, and have the executive program tie the modules together in a
hierarchical network. Thus results from the lowest chosen level of simulation could
be propagated to the higher layers in a way that would realistically emulate the
actual underlying cause-and-effect relationships involved.

At the end of Section 4.1, the concept of cascading neural networks was intro-
duced. Recall that to cascade neural networks, the output neurons of one neural net
are fed directly into the input neurons of another net. Consider an example where
one would like to model an incoming warhead. The lowest level neural networks
would probably pertain to materials and piece-parts in the system. These networks
would calculate materials responses to effects such as IR radiation, blast over-
pressure, and so on, and would pass the effects on the materials up to the next level
of integration, which would probably be the component level. The inputs for this
network would be comprised of the output neurons of all applicable materials/
piece-part networks. The outputs of each component network would then cascade
to the next level, probably subsystems. This cascading would continue up to, and
perhaps including, the system of systems level, if applicable. There would also likely
be some cross-talﬁ within the system; as the output of one material network may be
needed in several component or subsystem nets. The final output neurons from the
system, perhaps probability of kill or some other metric, would represent the
propagation of many neural networks configured into several levels.

This concept could potentially be taken even further. The threat, response, and
environment neural nets, along with the simulation/test integration networks, could
be used as the lowest level networks in the above cascading system. The situation
specifics could be fed into these networks, which would propagate their results to
the materials/piece-parts level networks, and up from there. Without too much
imagination, one could envision a single, large, neural net-based analysis tool. This
tool would be maintainable due to extreme modularity, fast running (once trained,
of course) due to the simple numerics involved, and would unify the approach to
nuclear survivability validation in a way that has not been achieved before.

One final example of how neural nets could aid in NSV is in the area of surviv-
ability protocol and regimen development. For protocol development, a neural
network could be constructed with input neurons corresponding to the subsystems
and materials, and with output neurons for validation tools and methodologies.
Binary inputs and outputs would be used here, with neurons used as toggle switches.
A similar network could be envisioned for constructing regimens from protocols.
These would be unusual applications of neural networks,%ut given the youth of the
field, few applications could truly be considered common. At this point, there is no
reason to believe that this approach would work better than an expert system, and
in fact, this method of using neural nets emulates expert system operation.

As with the sample expert systems in Section 3.2, these potential applications
listed here are examples of what could be done. This list is neither exhaustive nor
exclusive. Those more familiar with the areas touched on above would likely be able
to identify additional areas where tools such as these would prove useful.

4.3 NEURAL NETWORK ISSUES.

While artificial neural networks are the topic of intense research and develop-
ment at this time, there are issues and problems with them that should be addressed
before investing time or money into them. The widespread commercial application
of neural net technology is a very recent occurrence. The breakthrough that ushered
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in the current neural net interest is only about five years old. And as with expert
systems in the 1980s, a large speculative bubble seems to be forming for neural nets.
Whether this technology will gain mainstream acceptance is impossible to forecast
at this time, but indications are that most agencies are having more success in imple-
menting and deploying neural nets than has been had with expert systems.

One problem with neural networks is that they are not good at handling consis-
tently inconsistent data. This is also true of traditional programs and expert systems,
but it is especially troublesome here. In other types of programs, one usually would
explicitly define relationships between the data, and one could easily test for contra-
dictory data with hard-coded test statements. In expert systems, it is unlikely that
contradictory rules would be derived, unless multiple experts were used. In any
event, expert system tools are available to check for problems such as these.

Neural nets, however, have tremendous egos. They will happily train away on
any data given them, without ever suspecting they could be doing somethin
wrong. If the amount of contradictory data is relatively small, neural nets will
smugly ignore the offending data and concentrate on what seems consistent. in
cases where conflicting data are the rule rather than the exception, though, the
network may well organize itself into an inapplicable system that handles the incon-
sistencies as a side effect. Worst of all, when the trained network is run, it will
always confidently deliver an answer that has no foundation, without any hint that
something is amiss.

This effect is magnified by the second main problem with neural nets: reasoning
capacity. While traditional programs can be examined to determine their under-
lying logic, and expert systems will trace a rule path if requested, the reasoning
behind a neural networ{'s output is inaccessible. Recall that most of the knowledge
lies in the hidden layers of the network. These layers are called hidden for a reason.
After a network is trained, the sum total of its knowledge and abilities are found in a
series of two-dimensional real-valued numeric matrices. A training algorithm deter-
mined these weight matrices with little help from the user. At this time, there is
simply no way to determine why a neural net yields a certain answer.

Neural networks operate with astonishing speed. However, the preceding para-
graphs have done little to inspire confidence that the systems do any more than
calculate incorrect results with remarkable efficiency. The situation is not as grim as
it may appear. The first problem underscores a need to have a reasonable under-
standing and confidence in the data that is to be used for training. This would be a
prudent approach in any event. However, it is imperative that data is not simpl
thrown at the network for training without familiarity with the information. TKe
self-training operation of neural networks does not excuse the system creator from
understanding the problem domain at hand. Rather, it enhances the need for
familiarity greatly.

As for the problems with reasoning opacity and the fact that a trained network
will confidently answer any question, the solutions are a bit more subtle. First, as
long as the data which was used for training is acceptable, severe problems should
not occur within the range of data for which training was performed. If thereis a
question refgarding accuracy within the range, additional test cases should be
generated for the regime of interest. If necessary, portions of the database can be
more densely sampled, and the network retrained. One must be careful, however,
not to venture very far outside the domain of the training data. While neural
networks have good generalization abilities, outside its realm of expertise this
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generalization often fails. If these simple safeguards are followed, risk of error can
usually be held to an acceptable level.

4.4 NEURAL NETWORKS VERSUS EXPERT SYSTEMS.

Artificial neural networks and expert systems are, in many senses, competing
technologies. They compete for attention in the technical Eress. They compete for
use by those in target industries. They compete for research grants and customer
dollars. Individual institutions promoting one technology or another compete for
prestige. Indeed, neural nets and expert systems seem to have been involved in a
continual tug-of-war since the mid 1960s.

This is unfortunate, since in emulating human intelligence, the two technologies
are very complementary. The quick pattern recognition and generalization
provided by neural networks correspond to the mental functions that perform tasks
requiring immediate response (Wasserman, 1989). Such tasks include balance,
reflex, and instinct. Expert systems, conversely, model the logical, reasoning side of
human intellect. This side of brain activity is generally used for performing less time-
urgent tasks that require applied reasoning or deliberate action.

Thus expert systems are called for when a genius is needed, and neural nets are
indicated when an idiot savant will do. Neural nets are good for performing repeti-
tive tasks that would otherwise prove time-consuming. Expert systems are appro-
priate for limited applications that are difficult for the average person. it has already
been noted that expert systems provide a much more evident reasoning trail than do
neural networks. Another nice feature of expert systems is the ability to insert or
modify specific knowledge to gau?e the effect. When explicit knowledge is the
main concern, expert systems excel.

On the other hand, one of the main features of neural networks it the ability to
train a system without explicit knowledge. Generally, domain experts are not
needed for neural network development, as the needed expertise lies implicit in the
data used for training. If gauging the effect of additional information is necessary,
retraining the network with the additional data is straightforward. Thus the main
difference in constructing the two types of Al systems seams to be data collection
versus knowledge engineering. The type of data that is available, as well as the type
of :\ask that is to be performed, shouleetermine which technology is appropriate, if
either.
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SECTION 5
FUZZY SETS AND FU2ZY LOGIC

The third and final technical concept described in this paper is fuzzy set theory
and fuzzy logic. Fuzzy sets are a relatively recent development in the field of mathe-
matics. While not developed as a subfield of Al, the concepts are very intertwined
with both expert systems and neural networks. In addition, the popular press has
seen fit to lump fuzzy theory in with Al. When considering that the definition of Al
used in this paper involves the use of non-traditional methods to solve problemsin a
human-like way, fuzzy logic would appear to fit into the category nicely.

5.1 FUZzZY LOGIC: TECHNICAL DISCUSSION.

The concept behind fuzzy logic is that of partial set membership. Traditional
("crisp”) set theory states that any existing object is either in a particular set
completely, or not at all. In 1965, Zadeh generalized crisp set theory by allowing
objects to {)e partial members of a set. Set membership values range from zero to
one, inclusive, with zero indicating nonmembership and one implying total member-
ship. If only the extreme values are used, as in crisp sets, Zadeh's set manipulations
work just as the traditional set operators do. Thus crisp set theory is a proper subset,
or special case, of fuzzy set theory.

Fuzzy set syntax is similar to that of crisp sets. A crisp set definition might be:
A={w,xy,z}

where A is the name of the set, and w, x, y, and z are the membersof A. A
corresponding fuzzy set could be :

A ={1.0/w,0.6/x,0.1/y,0.75/2}

where A is again the name of the set. Using this nomenclature, w is a complete
member of A, x is 60 percentin A, and so on. The elements of fuzzy sets have two
components each; an element and its degree of membership. The degree is listed
first, and the two are separated with a slash.

Familiar crisp set operators have analogs in fuzzy theory. The union of two crisp
sets is simply another set containing all elements of both sets. With fuzzy sets, the
union is not quite as obvious. Consider the fuzzy sets A above and B as follows:

B ={0.3/1,0.9/u,0.6/w,0.8/x}.
The definitions of fuzzy union and intersection are:

AUB = {max(a(x),b(x))/x | XxCU} and
ANB = {min(a(x),b(x))/x | XCU}

where A and B are fuzzy subsets of the universe U, and a(x) is the degree of member-
ship of x in A and b(x) is the degree of membership of x in B (Schmucker, 1984). For
the example sets above,

AUB ={0.3/t,0.9/u,1.0/w,0.8/x,0.1/y,0.75/z} and
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ANB = {0.6/w,0.6/x}

A more useful set would have an infinite number of elements and a membership
criterion that is a function. For example, define the fuzzy set of youth as follows:

Y = {m(x)/x | x is a positive real number},

and m(x) is as shown in Figure 5-1.
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Figure 5-1. Youth fuzzy set membership.

The mathematical functions associated with Figure 5-1. are:

m(x) = 1.0, for x<25;
m(x) =-0.04x + 2, for 25x50; and
m(x) = 0.0, for x>50.

Using this fuzzy set definition, one could picture applications where age would
be a determining factor, such as in defining a target marketing group that included
such other fuzzy data as wealthiness and crisp data like education and geographical
location. A targeted individual may be someone somewhat young, very wealthy,
not living in New York state, and college-educated. Adjectives such as “somewhat,"
"very," and "not" are referred to as hedges, and are used to vary the shapes of fuzzy
membership distributions. "Somewhat" is a dilating hedge, "very" is an concen-
trating hedge, and "not" is a reversing hedge. Other hedges are available to
perform such transformations as normalization, intensification, and fuzzification.
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5.2 POTENTIAL FUZZY LOGIC APPLICATIONS FOR NUCLEAR SURVIVABILITY
VALIDATION.

It has been shown that the sole purpose of fuzzy logic is for dealing with
uncertain data and concepts. Given this prime characteristic, there are several ways
in which fuzzy sets and fuzzy logic could apply to NSV. In Section 1, uncertainties
were shown to be a problem for accurately performing the needed tasks. Uncer-
tainties were evident in threat characteristics, environment modeling, and systems
response. In terms of fuzzy logic and Al, the most obvious applications would be
embedded in expert systems or neural networks.

Expert systems have a simple form of uncertainty management included, in the
form of confidence factors (see Section 3.1). This can be extended with the use of
fuzzy logic. Forinstance, rather than creating an IF-THEN rule with numeric values in
the antecedent, such as

IF warhead yield is greater than 1 megaton .. .,
a rule could test for an imprecise concept
IF warhead yield is relatively large . . . .

A fuzzy membership function for warhead size would be created as shown above,
and the corresponding outputs from this function could be used as confidence
factors in both the antecedent and consequent of the rule. Thusif the U.S. were not
able to ascertain the exact characteristics of a potential threat, it could still be
addressed with approximate or vague data. Similar applications for environment
and effects problems could be similarly constructed.

Neural networks have the ability to work well with fuzzy data with no conceptual
extension whatsoever. There are two ways in which this can be accomplished. In the
first one, an input neuron is defined for fuzzy set membership level in addition to
the other applicable problem input neurons, and the value of the membership
function is inserted along with the other input data. In some cases, neural networks
have some problems training effectively on such data, and in these cases the second
method often works. Here, one simply defines a set of neurons for the fuzzy concept
being considered. Each neuron is assigned a range of fuzzy set membership values,
and the applicable one (or ones, if an additional error range is used) are activated to
a level greater than zero and less than or equal to one. Examples of both of these
concepts were described in Section 4.2.

Fuzzy sets and fuzzy logic are used as embedded routines and data within other
applications. While expert systems and neural networks are often (usually) used in a
stand-alone modes, no such mode is applicable with fuzzy logic. Inclusion of fuzzy
sets within other (non-Al) analysis codes in the NSV community is possible, though.
Many of these physics and engineering codes use parameters such as warhead size or
other uncertain concepts. There is no reason that fuzzy logic could not be incorpor-
?te,?- into some of these codes to handle inherent uncertainties in a more rigorous

ashion.
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SECTION 6
SUMMARY/CONCLUSIONS

While nuclear survivability validation is a task that has been addressed at many
levels for a number of years, problems do exist with current methodologies and
tools. By definition of the problem domain, there is a great deal of uncertainty with
which to deal. Uncertainties in threat definitions and scenarios are evident, as well
as uncertainty in predicting threat environments and resultant effects. And uncer-
tainties in integrating multi-testmulti-simulation data are common. System com-
piexity continues to increase at all levels of integration as new technologies emerge
and find their way into deployed systems. Thus the ability to assess these complex,
highly-integrated devices in nuclear-degraded environments must keep pace with
the incorporated technologies. Indeed, with multi-level interdependent systems
now the rule, the ability to accurately gauge these synergistic effects becomes vital.
As new requirements such as operate through and single event upset survival are
defined, some effects that have in the past received a cursory treatment must now
be thoroughly explored.

Artificial intelligence offers NSV researchers several tools to add to their existing
inventory. In most cases, the Al tools will simply allow existing tools to be used more
efficiently and effectively. In particular, the Al paradigms of expert systems, artificial
neural networks, and fuzzy logic seem very applicable to the problems listed above.

Expert systems are indicated when modeling high-level human abilities or
expertise is required. Examples of potential expert systems for integrating multi-
level systems were presented, along with possible test data integration expert
systems. NSV protocol and regimen generation was shown to be approachable with
expert systems. Systems response categorization expert systems were described, as
were expert systems for man-in-the-loop simulation modeling.

Neural networks show the most promise for the more numeric aspects of several
of the problems described. Uncertainty handling is a natural application for neural
net modeling, as hidden trends and generalities that might otherwise escape detec-
tion can often be found. The modeling of complex, integrated systems via cascading
neural networks could well lead to a more consistent approach to NSV simulation
than has ever been achievable. And such a cascaded neural net hierarchy, once
trained, would allow extremely in-depth parametric studies, as neural networks
operate with extreme speed.

Fuzzy set theory and fuzzy logic, while not truly subfields of Al, provide exten-
sions to expert systems and neural networks that are required to address some of the
problems above. In particular, fuzzy logic provides a powerful way to deal with
uncertainty and imprecise data. Fuzzy parameters within both expert systems and
neural networks would be straightforward to implement. Additionally, fuzzy logic
might well be added to existing NSV tools to help handle necessary uncertainty and
imprecision with better consistency.

Al presents a set of sound and mature technologies. A general rule (to which
exceptions exist) is that Al works best when a fast, good answer is better than a slow,
perfect one. Care must be used in the application of Al technologies, but no more
than with any of the other methods used for NSV. Any computer tool that is trusted
blindly or applied indiscriminately will temp the fates, and Al is certainly no excep-
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tion. But with a coordinated approach and a rigorous test program, Al holds
promise to unlock doors for the NSV community that have previously proven
impenetrable.
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APPENDIX A
Al HISTORY/BACKGROUND

The histories of the previously discussed subfields of Al present an interesting and
useful set of data in themselves. Many lessons learned are included below, as well as
milestones in Al research.

A1 EXPERT SYSTEMS HISTORY/BACKGROUND.

Following the near abandonment of artificial neural networks in the early 1970s
after the publication of Perceptrons (Minsky, 1969), expert systems received the
lion's share of Al research funding. This was no accident; the primary author of
Perceptrons (Prof. Marvin Minsky of MIT) was one of the most vocal early propo-
nents of expert systems. Aithough there were a few well-known expert systems
before 1969 (Slagle, 1961), expert systems caught on only after the downfall of
neural networks. This is discussed in more detail below in Section A.2. One earl
application proved a spectacular success and caught the immediate attention ot the
technical press, paving the way for several other highly-touted early systems. That
was the DENDRAL project (Feigenbaum, 1971) at Stanford, which considered nuclear
magnetic resonance, mass spectrograph, and various other chemical experiment
results to determine potential structures of an arbitrary unknown compound.
DENDRAL's capabilities are considerable. To this day, itis acknowledged that
"DENDRAL surpasses all humans at its task and, as a consequence, has caused a
redef)inition of the roles of humans and machines in chemical research” (Hayes-Roth,
1983).

After the publication of DENDRAL's success, a flood of expert systems emerged
from laboratories worldwide. Among those pre-1980 expert systems are several that
still rank as Al's most famous successes. One of the most well-known expert systems
in existence is MYCIN (Lenat, 1984), which diagnoses and suggests treatments for
infectious blood diseases. A panel of medical experts compared the efficacy of
MYCIN directly with a group of physicians (including both blood disease experts and
interns). MYCIN was judged equal or superior to all other participants. MYCIN was
the first expert system to use a set of IF-THEN rules that was truly independent from
other parts of the program, and it spawned several other broudly-known programs.
EMYCIN (van Melle, 1979) (MYCIN without the IF-THEN rules) was used to create a
cardiopulmonary function disease expert system called PUFF (Feigenbaum, 1977)
and a mineral deposit locating program called PROSPECTOR (Duda, 1979).

Another early famiIK of expert system applications originated at Carnegie-Mellon
University, starting with PSG (Newell, 1973), a computer language for modeling
human cognition. Over the course of several years, PSG evolved into the OPS (Forgy,
1977) series of languages which are still widely used, and ultimately into R1, an
expert system still used for configuring DEC VAX computers (quipped the author on
the name of the system: "l used to didn't know what an expert was, and now | R1.").

About 1980, expert systems began a migration from academic to commercial
laboratories. Many large corporations created specialized internal expert systems to
solve specific problems for which they currently had experts available. Simul-
taneously, a large number of start-up Al consurting and software companies sprang
into existence. These firms offered their services to large corporations, identifying
potential expert system applications and usually constructing the systems. Other Al
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companies created expert system "shell" programs, allowing companies (or
individuals) to create their own expert systems. Generally, the most successful
applications from this period were created internally at large corporations with
custom software.

The Al/expert system companies were largely a short-lived phenomenon,
although several companies have survived with specialized or superior products/
services. There were several reasons for this decline. First, many companies wanted
to "jump on the Al bandwagon,” using Al for Al's sake. In these cases expert systems
technology was often not really necessary, and the results were, therefore, disap-
pointing. When expert systems were created to perform mundane or simple tasks, it
became clear to management that the return on the considerable investment was
poor. The second reason for the decline of expert systems companies was that the
early expert system shells were generally quite limited in their abilities. They tried to
develop programs that would create expert systems for any application, and the
result was that in their race to market, the products were actually not very powerful.
Overhyped advertisements made many companies abandon Al after a few false
starts. A third factor is that expert systems, contrary to advertisement, are not easy
things to produce. The technical details behind this were discussed in Section 3.1.

The result of these problems is that expert systems are no longer held in the
esteem that they once were. The vast majority of the start-up companies "went
public” or were acquired by other firms shortly after their inception. Most of the
time, the companies survived just long enough to make the founder a handsome
profit. Had technical forces driven the evolution of expert systems rather than
commercial forces, the situation would probably be much different today. Alter-
natively, the shakeout of the expert systems market may prove valuable in the long
run. The companies and products that have survived are far superior to the rank-
and-file shells that appeared in the early 1980s. Plus, with most of the hype gone,
companies are using expert systems where they are actually needed, rather than
creating them as showpieces for shareholders or customers. Many companies and
agencies have used expert systems successfully over the past decade, and quietly
continue to do so. Expert systems tools continue to evolve, and surviving expert
system companies are again growing.

A.2 NEURAL NETWORK HISTORY/BACKGROUND.

Despite the recent blitz in the popular press, neural network research is perhaps
the single most mature subfield of Al, at least in terms of years of study. Perhaps this
is because itis not a "proper"” subset of Al, rather it has emerged from the widely
divergent fields of biology, psychology/learning theory, and computer science. The
earliest pioneers in the neural networl field in the 1940s had nothing to do with
computer science, as digital computers were still in their infancy. Rather, they were
neurobiologists, neuroanatomists, and learning theorists. The work of McCullogh
(1943) and Pitts (1947) describing a mathematical model of neural activity and
Donald Hebb's learning theories (1949) stand as landmarks about which most early
neural network activity centered. This work and much that built upon it was
modeled with electronic circuits in the late 1950s and on computers in the early
1960s.

With several fascinating applications in the early 1960s, the first Al boom began.
Researchers produced single-layer neural networks for such previously unapproach-
able tasks as weather pregiction, electrocardiogram analysis, and computer vision.
Researchers also constructed the concepi of multi-layer networks, but only knew
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how to consistently train single-layer networks, which were referred to as percep-
trons (Rosenblatt, 1958). While several neural nets made headlines, other research-
ers were having difficulty applying the technology to their problems. Some very
simple and straightforward problem domains befuddled researchers for a number of
years. In 1969, Prof. Marvin Minsky of MIT published Perceptrons, in which he
described the reasons behind these shortcomings.

The main problem with perceptrons, it turned out, was one of linear separability.
This was discussed in detail in Section 4.1, and suffice it to say here that most inter-
esting problems are not linearly separable, and thus, showed Prof. Minsky, not
modelable by perceptrons. Many such problems are solvable by multi-layer neural
networks, but Prof. Minsky opined in his book that the problems with training multi-
layer nets were insurmountable. He actually did urge research to investigate this
further, but his stated opinion was sufficient to deal neural network research a near-
fatal blow. Funding for neural network research all but disappeared, and public
interestin Al waneg until the expert system boom of the late 1970s.

The concerted effort of computer scientists, neurobiologists, and psychiatrists
fractured at that point, and further neural net research was scattered among various
academic institutions. A dedicated group of researchers kept neural networ
research active, and continued to make advances during the "dark ages" of neural
nets. These individuals included James Anderson (1972), Teuvo Kohonen (1972),
Steven Grossberg (1973), and Kunihiko Fukushima (1975). However, very little public
attention was paid to neural networks until 1986, when Rumelhart, Hinton, and
Williams derived an algorithm, called backpropagation, for training multi-layer
neural networks. When their work became well-known, it was shown that the
backpropagation algorithm had earlier been presented by Parker in 1982. Shortly
thereafter, Webros was discovered to have described backpropagation even earlier,
in 1974. The fact that three sets of researchers independently derived this technique
over the course of twelve years speaks volumes on the fragmented state of neural
net research of that period. Their collective research provided the breakthrough
that was needed to make neural networks applicable to a much larger set of
problems than was solvable by the simple perceptron.

Shortly after the backpropagation training method was developed and demon-
strated, a great deal of activity occurred in neural net research and development. A
flurry of papers was published detailing multilayer networks that solved problems
that had proved intractable in the 1960s. Several commercial neural network shells
came to market and were immediately applied to a much broader range of problems
that could have been approached bef)c,ne. Itis somehow appropriate that neural
networks had a long dormant period, as computers in the 1960s would have been
hard pressed to implement the new training algorithms. Training large neural
networks via backpropagation is CPU, memory, and storage intensive.

Several famous neural nets were developed with backpropagation training
techniques, and they have fueled the speculative fire much in the same way that the
early expert systems did. The most famous of these, NetTalk by Sejnowski and
Rosenberg (1987), converts text to phonemes (human language sound primitives),
which can be easily routed to a speech synthesizer for conversion to sound. NetTalk
proved better at pronouncing English words than any other algorithm yet produced.
Exhaustive databases of human-dgerived pronunciation phonemes still exceed
NetTalk's abilities, but NetTalk's ability to continue learning without human inter-
vention, and with neither pronunciation rules nor a dictionary, is unique. Other
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early famous multilayer networks performed such tasks as handwriting recognition
(Burr, 1987) and image compression (Cottrell, 1987).

In addition to these early showpieces, a large number of networks have been
constructed by individual agencies for their own use. California Scientific Software,
a major neural network shell developer, reports (Lawrence, 1991) on a wide variety
of networks that have been constructed using their and other software. These
applicationsinclude:

NYU Medical Center: Robot limb control

NASA: Robotic object manipulation
General Dynamics: Underwater sonar signal analysis
Univ. of PA/TRW: Aircraft identification
Helsinki Univ. of Tech.: Speech recognition

USAF: Flight simulator support
General Devices: Engine Problem Diagnosis
Eaton: Multi-axle truck brake control
BC Hydro: Power grid control
Halliburton: Mudlog analysis

TWA: Bomb detection

Backpropagation is not the ultimate advancement in neural network research.
Rather, it provided a method that made neural nets practical for the first time. A
great deal of research is ongoing in the neural net arena, though few new concepts

ave advanced very far beyond the laboratory at this point, as was discussed in
Section 4.1. In addition to the software developments mentioned above, neural
networks seem to have come full circle to the approach of the 1950s, when dedi-
cated electronic circuits were devised for neural net simulation. Neural computing
processing chips have been or are being developed by AT&T, CalTech, DARPA,
M%torola, Nova Technology, Syntonic Systems, Intel, Micro Devices, Hitachi, and Bell
Labs.

A.3 FUZZY THEORY HISTORY/BACKGROUND.

Compared to the rich and varied history of expert systems and neural networks,
there is relatively little to be said regarding fuzzy logic history. Perceiving a need to
be able to handle uncertainty in set theory better than was currently achievable,
Russian-born Iranian computer scientist (working at Berkeley) Lofti A. Zadeh first
described fuzzy theory in 1965. His work went largely unnoticed until the 1980s,
when Japanese researchers applied his work to several problems. Commercial
applications of fuzzy logic began appearing in Japan a few years ago, and the
technology has become very common in many Japanese consumer products.
Examples of fuzzy logic applications in Japan include automatic camera focusing,
camcorder picture stabilization, washing machine automation, vacuum cleaners, air
conditioners, rice cookers, microwave ovens, toasters, refrigerators, antilock brakes,
and automatic transmissions (Tanzer, 1991). The U.S. has also jumped on the fuzzy
bandwagon, with firms such as Eaton, GE, GM, HP, Honeywelf, and Rockwell devel-
oping fuzzy commercial products.

Al researchers were among the first to apply the technology in the U.S. Fuzzy sets
and the associated logic and set manipulations fit very nicely into both expert
systems and neural network paradigms. This was described in detail in Section 5.2,
but expert systems have always had a methodology related to fuzzy logic, and this
has been extended. Neural nets work nicely with fuzzy neuron sets without any
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special effort on the part of programmers or modified software for the analysis. Like
neural networks, specialized chips have begun to appear to process fuzzy variables.
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APPENDIX B
GLOSSARY

ABM - Anti Ballistic Missile

AGT - Aboveground Test

Al - Artificial Intelligence

ART - Adaptive Resonance Theory

ATA&T - Ameiican Telephone and Telegrapn

BAM - Bidirectional Associative Memory

BC - British Columbia

CalTech - California Institute of Technology

CPU - Central Processing Unit

DARPA - Defense Advanced Research Projects Agency
DEC VAX - Digital Equipment Corporation Virtual Address Extension
EMP - Electromagnetic Pulse

FORTRAN - Formula Translation

GE - General Electric

GM - General Motors

GPS - Global Positioning System

HP - Hewlett-Packard

IR - Infrared

LISP - List Processor

MCC - Microelectronics and Computer Technology Corporation
M.D. - Medical Doctor

MIT - Massachusetts Institute of Technology

NASA - National Aeronautics and Space Administration
NSV - Nuclear Survivability Validation

nudet - Nuclear Detonation

NYU - New York University

PA - Pennsylvania

ProlLog - Programming with Logic

RLG - Ring Laser Gyro

SEU - Single Event Upset

TWA - Trans World Airlines

UGT - Underground Test

U.S. - United States

USAF - United States Air Force

XOR - Exclusive Or
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AERQOSPACE CORP ATTN: J KEE
ATTN: D BARNARD ATTN: K SCHAFFER
ATTN: HBLAES ATTN: L ALBRIGHT
ATTN: LIBRARY ACQUISITION ATTN: M SAUNDERS
ATTN: M HOPKINS ATTN: R BALESTRI
ATTN: M WATSON ATTN: R LEZEC
ATTN: E BROUILLETTE ATTN: R RAPIDS
ATTN: S GYETVAY ATTN: S ENG
ATTN: W BARRY ATTN: V DEPRENGER
ATTN: F FINLAYSON
ATTN: P BUCHMAN BOOZ-ALLEN & HAMILTON, INC
ATTN: SEED M4/934 J CHAI ATTN: C HAYSLIPP
ATTN: HWEBSTER
ANALYTIC SERVICES, INC (ANSER) ATTN: J KEE
ATTN: DR J SEELIG ATTN: R RAPIDS
ATTN: DR S CROWLEY ATTN: T HANSON
ATTN: LIBRARY
ATTN: MSL SYS DIV MCN BOOZ/ALLEN & HAMILTON INC
ATTN: JLEE
APPLIED RESEARCH ASSOCIATES ATTN: R SWISTAK
ATTN: R FLORY
ATTN: S SPERRY CALSPAN CORP
ATTN: M HOLDEN
APTEK, INC
ATTN: T MEAGHER CHARLES STARK DRAPER LAB, INC
ATTN: VICE PRESIDENT-ENGINEERING ATTN: B HARRIS
BALL AEROSPACE SYSTEMS DIVISION COMPUTER SCIENCES CORP
ATTN: D L MURATA-SEAWALT ATTN: R SCHEMMEL

ATTN: T RADEBAUGH
BATTELLE EDGEWOOD OPERATIONS

ATTN: CBIAC J MCNEELY DELCO SYSTEMS OPERATIONS
ATTN: C CAPPS
BATTELLE MEMORIAL INSTITUTE
ATTN: V PUGLIELL DYNAMICS RESEARCH CORP
ATTN: TACTICAL TECH CTR ATTN: RCUCE

Dist-5




DNA-TR-92-82 (DL CONTINUED)

E-SYSTEMS, INC
ATTN: TECH INFO CTR

E-SYSTEMS, INC
ATTN: DR W DICKSON

GENERAL DYNAMICS-FORT WORTH DIVISION

ATTN: MZ-5997

HUDSON INSTITUTE, INC
ATTN: LIBRARY

JAYCOR
ATTN: D WALTERS
ATTN: DR B C PASSENHEIM
ATTN: E WENAAS
ATTN: W SEIDLER

JAYCOR
ATTN: CYRUS P KNOWLES
ATTN: E IRISH
ATTN: E WENAAS
ATTN: G THEROUX
ATTN: H DICKENSCN

JAYCOR
ATTN: B DAVIS
ATTN: W CREVIER

JAYCOR
ATTN: RPOLL

JAYCOR
ATTN: P MLAKAR

JAYCOR
ATTN: C THOMPSON

KAMAN SCIENCES CORP
ATTN: D COYNE
ATTN: L MENTE
ATTN: LIBRARY
ATTN: R RAAB

KAMAN SCIENCES CORP
ATTN: ASST SUPV SCTY
ATTN: C EKLUND
2CYS ATTN: D RODVOLD
2CYS ATTN: R WILLIAMS
2CYS ATTN: W GATELEY
ATTN: J EAMON
ATTN: J HARPER
ATTN: J KEITH
2CYS ATTN: P BOOK
ATTN: P WELLS
ATTN: R GREER
2CYS ATTN: T ASTRINGER
ATTN: W YOUNG

KAMAN SCIENCES CORP
ATTN: DASIAC
ATTN: E CONRAD
ATTN: R GUENTHER

KAMAN SCIENCES CORPORATION
ATTN: DASIAC

Dist-6

LOCKHEED AERONAUTICAL SYSTEMS
ATTN: CENTRAL LIBRARY

LOGICON R & D ASSOCIATES
ATTN: CMO
ATTN: DR T A PUCIK
ATTN: G IVY
ATTN: G K SCHLEGEL
ATTN: G MESSENGER
ATTN: G SAFONOV
ATTN: J KING
ATTN: LIBRARY

LOGICON R & D ASSOCIATES
ATTN: D CARLSON
ATTN: DOCUMENT CONTROL
ATTN: S WOODFORD

LOGICON R & D ASSOCIATES
ATTN: MANAGER

M1 TLINCOLN LAB
ATTN: V SFERRINO
ATTN: CF WILSON
ATTN: V MISELIS
ATTN: R HALL

MARTIN MARIETTA CORP
ATTN: DR S ZEIBERG

MISSION RESEARCH CORP
ATTN: ABOLT
ATTN: DOCUMENT CONTROL
ATTN: E B SAVAGE
ATTN: E PETTUS
ATTN: J HAWXHURST
ATTN: TECH INFO CENTER
ATTN: W CREVIER

MITRE CORPORATION
ATTN: LIBRARY

NICHOLS RESEARCH CORPORATION
ATTN: G SHELBY
ATTN: HENRY T SMITH
ATTN: K DENT
ATTN: LARS ERICSSON
ATTN: RBYRN

NICHOLS RESEARCH CORPORATION
ATTN: L GAROZZO

PHYSICS INTERNATIONAL CO
ATTN: LIBRARY

S-CUBED

ATTN: DR M MONTGOMERY
ATTN: DR C DISMUKES
ATTN: DR G GURTMAN

3CYS ATTN: H FREIBERG
ATTN: J KNIGHTENM
ATTN: J M WILKENFELD
ATTN: R LAFRENZ
ATTN: R WILSON
ATTN: WAISMAN




S-CUBED
ATTN: J ATKINSON
ATTN: J NORTHROP

SCI TECHNOLOGY, INC
ATTN: DOCUMENT CONTROL

SCIENCE APPLICATIONS INTL CORP
ATTN: TECHNICAL REPORT SYSTEM

SCIENCE APPLICATIONS INTL CORP
ATTN: TECH LIBRARY

Dist-7
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SPARTA INC
ATTN: HM BERKOWITZ

SPIRE CORP
ATTN: R EVANS

SYSTEM PLANNING CORP
ATTN: P MOON

TELEDYNE BROWN ENGINEERING
ATTN: P SHELTON

WEIDLINGER ASSOCIATES, INC
ATTN: T DEEVY




